
如何采用 SystemVerilog 来改善基于 FPGA 的 ASIC 原型
关键词:FPGA, ASIC, SystemVerilog
摘要:ASIC 在解决高性能复杂设计概念方面提供了一种解决方案,但是 ASIC 也是高投资风

险的,如 90nm ASIC/SoC 设计大约需要 2000 万美元开发成本.为了降低成本,现在可采用

FPGA 来实现 ASIC.但是,但 ASIC 集成度较大时,需要几个 FPGA 来实现,这就需要考虑如何

来连接 ASIC 设计中所有的逻辑区块.采用 SystemVerilog,可以简化这一问题.

How to improve FPGA-based ASIC prototyping with SystemVerilog

FPGA prototyping is not without its difficulties; one major obstacle has been connecting all
the logic blocks both within an FPGA and across multiple FPGA devices...
By Roger Do, Mentor Graphics

Introduction

ASICs provide a solution for capturing high performance complex design

concepts and preventing competitors from simply implementing comparable

designs.

However, creating an ASIC is a high-investment proposition with

development costs approaching $20M for a 90 nm ASIC/SoC design and

expected to top $40M for a 45 nm SoC. Thus, increasingly, only a

high-volume product can afford an ASIC.

Besides the increase in mask-set cost, total development cost is also

increasing due to the reduced probability of getting the design right the

first time. As design complexity continues to increase, surveys have shown

that only about a third of today's SoC designs are bug-free in first

silicon, and nearly half of all respins are reported as being caused by

functional logic error(s). As a result, verification managers are now

exploring ways to strengthen their functional verification

methodologies.

Before starting on a true ASIC design, to demonstrate that concepts are

sound and that designs can be implemented, a lower-cost method of using

FPGAs to prototype ASIC designs as part of an ASIC verification

methodology has been growing in popularity.

Prototyping ASIC designs in FPGAs, while often yielding different

performance, often results in the same logical functionality. Further,

running a design at speed on an FPGA prototype with real stimulus allows

for a far more exhaustive and realistic functional coverage as well as

early integration with embedded software. Thus FPGA prototyping can be

used effectively to supplement and extend existing functional

verification methodologies.

As ASIC designs have grown larger at a much faster pace than FPGA devices,

often multiple FPGA devices must be used to prototype a single ASIC. The

obstacle of using multiple devices is the task of connecting all of the

logical blocks of the ASIC design across multiple FPGA devices. Physically,

with the use of the high speed I/O blocks in FPGA devices, connectivity

between physical devices has been simplified. However, methods for

logically connecting the design blocks have proven to be manually

intensive and error prone. With the introduction of SystemVerilog, an

evolutionary RTL language, and advanced mixed language synthesis tools

such as Mentor Graphics' Precision Synthesis, the procedure for

connection has also been simplified.

SystemVerilog

SystemVerilog is not an entirely new RTL language. With its rich set of

extensions to the existing Verilog HDL, SystemVerilog is backward

compatible with both Verilog 95 and Verilog 2001. Many of these extensions

to Verilog make it easier to create accurate, synthesizable models of

designs of any size. These extensions also make SystemVerilog easier to

use and are truly beneficial to every engineer currently working with

Verilog.

The connectivity advantages of SystemVerilog stem from:

1. More compact RTL descriptions with efficient coding methods.

2. Encapsulation, allowing designers to model at more abstract levels
with interface descriptions.

Using SystemVerilog for FPGA prototyping does not necessarily mean that

the entire ASIC design needs to be written in SystemVerilog to reap the

benefits. The obstacle of connectivity can be simplified by just using

SystemVerilog to describe the top level module of each FPGA.

Compacting the code

Increased design sizes have increased the number of lines of RTL code

required to represent the design. Design bugs can actually be attributed

to the number of lines of code written. SystemVerilog results in improved

specification of design, more concise expressions and the unification of

verification and design. All of which results in earlier time to market

and early detection of design bugs. In fact, SystemVerilog can be two to

five times more compact than Verilog RTL.

Both VHDL and Verilog have positional and named port connections.

Positional ports can be mis-ordered, while named ports can be too verbose

and redundant, especially at the top level modules.

SystemVerilog has .name and .* port connections. These methods provide

a more concise and less error prone method to describe connectivity.

Inherent also in this methodology is a stronger typing on port connections.

Port sizes must match, ports cannot be omitted, and all ports must be

declared.

Implicit Port Connection features provide designers with very important

capabilities, which are not currently available from any other HDL

languages. These features provide immediate benefits to both ASIC and FPGA

designers, especially in the area of FPGA prototyping. Not only can

designers save up to 75% of coding for the top-level instantiation, these

features also provide strong, VHDL-like and less error-prone coding

styles as illustrated by coding examples.

Comparing a simple, top-level design example:

• With Verilog port interfaces:

o 250 words / 1,770 characters / 122 lines

.

• With SystemVerilog .* implicit port interfaces:

o 72 words / 492 characters / 37 lines

Furthermore, the interesting side-effects of the implicit port connection

enhancements include the following:

• Significant reduction in code required to model port connections.

• Stronger VHDL-like typing on port connections.

• Reduction in port-size instantiation errors since all port sizes

must match.

• Reduction in omission of ports since all unconnected ports must be

listed.

• Less repetitive, time consuming, and error-prone than assembling

the top-level design in VHDL or Verilog.

Thus, the top-level instantiation of modules to each other can be much

simpler by employing SystemVerilog at the top level of each FPGA device.

The lower level blocks do not necessarily have to be converted to

SystemVerilog.

Encapsulation

Connection of a module to the I/O blocks of the FPGA device presents

another dilemma. More often than not, when modules are separated in ASIC

designs, the number of total I/O's needed for connection between FPGA

devices is now greater than the number available on these devices.

Most often pins must be multiplexed in order to accommodate all of I/O's.

SystemVerilog provides a feature that can help in providing this

functionality for FPGA prototyping without having to modify the ASIC

design.

Verilog connects one module to another through module ports. This requires

a detailed knowledge of the intended hardware design, in order to define

the specific ports of each module that makes up the design. Several modules

often have many of the same ports, requiring redundant port definitions

for each module. Every module connected to a data bus protocol, for example,

must have the same ports defined.

SystemVerilog interfaces offer an object-oriented paradigm for

abstraction in communication models by focusing the description in one

location. This ability to localize the description of an interface, use

it as an abstract port type, and let the synthesis process appropriately

spread the hardware through the design, provides a big advantage to the

design process.

Many design teams have written a specification for a bus, only to discover

in integration testing that the specification was not quite clear enough,

and that there were two or more interpretations of it, requiring pieces

of the design to be reworked.

An interface is defined independently from modules, between the keywords

"interface" and "endinterface". Modules can use an interface exactly like

if it were a single port.

In its simplest form, an interface can be considered a bundle of wires.

However, interfaces go far beyond just representing bundles of

interconnecting signals. An interface can also contain data type
declarations, tasks, functions, continuous assign statements,
and ,i>procedural blocks to specify communication protocols based on bus

signals. An interface can also include functionality that is common to

each module that uses the interface and can include built-in protocol

checking. Thus interfaces can be used to mux signals at the top level of

the FPGA design connecting to the I/O blocks.

When interfaces are used, one engineer can own the interface and provide

an API that other engineers can use to connect to the bus, hiding the

details of the data transfer onto and off of the bus. This provides

advantages in terms of scalability, and because the description is in a

single location. If another signal needs to be added to the interface,

this can be done without requiring every module that passes the bus through

it to be modified to add the signal.

Another advantage of interfaces is that they are easily exchangeable with

other interfaces supporting the same API. If a design was originally

developed with a serial bus, but it is subsequently discovered that a

parallel bus is required, for example, the interface can be exchanged

leaving the rest of the design unmodified – a very fast method to retarget

a design. Or, in the case of FPGA prototyping, the bus definition can be

changed between the ASIC design and the FPGA design without affecting any

of the logic blocks.

SystemVerilog allows multiple views of the interface to be defined using

modports. For example, each module connected to the interface can specify
and share direction of the signal local to the interface port. Significant

code size reduction is possible when multiple modules refer to the same

interface; rather than listing all of the ports on each module, the single

port reflecting the interface is sufficient.

The following example shows the basic syntax for defining, instantiating,

and connecting an interface:

Conclusion

With increasing competitive pressures and shorter product life cycles,

designers have less time to develop high performance and complex designs.

At the same time, the development cost of an ASIC is increasing rapidly,

making it less feasible to use ASIC devices for many cost-sensitive

applications without extensive testing and simulation. To overcome these

problems, FPGA prototyping is being adopted to provide a timely and

cost-effective design methodology that enables systems to be verified

before committing to a much more costly ASIC design.

However, FPGA prototyping is not without its difficulties. One major

obstacle has been connecting all the logic blocks both within an FPGA and

across multiple FPGA devices. With the adoption of SystemVerilog many of

the obstacles in connectivity can be addressed in a more simplistic and

efficient manner than with other HDL languages.

Roger Do is a member of the FPGA Solutions Marketing Team
in the Design Creation and Synthesis Group at Mentor Graphics.
In this role, Roger is responsible for outbound marketing
and business development for FPGA synthesis products.

Roger joined Mentor Graphics in 1999 and brings over 14 years of experience
in the semiconductor industry where he served in a variety of applications,
marketing, and field sales roles. Prior to joining Mentor Graphics, Roger
held various positions at Lattice Semiconductor, Lucent Technologies, and
Texas Instruments. He holds a bachelor's degree in Electrical Engineering
from Texas A&M University.

